Exterior Masonry Walls and Energy Code Compliance

NOV 9, 2017

By W. Mark McGinley, Ph. D. , PE , FASTM

The Masonry Society

AIA Provider: 50119857

The Masonry Society is a registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available upon request.

This program is registered with AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing or dealing in any material or product.

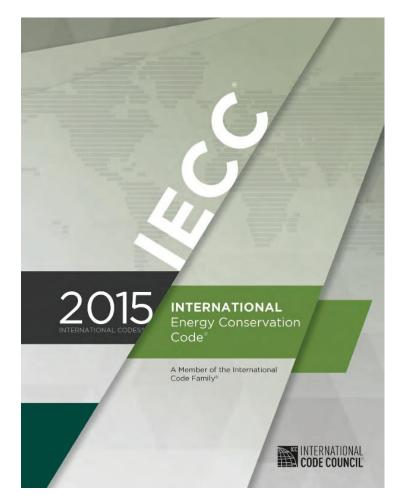
Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Course Description

Program Description: Achieving energy code compliance is becoming increasingly more difficult using the code prescriptive methods. Whole building analysis is one alternative method that will produce more cost effective designs for exterior masonry assemblies. This presentation provides an overview of energy code provisions, reviews energy studies performed utilizing whole building analysis, and provides recommendations for cost effective energy efficient solutions for energy efficient exterior masonry wall designs.

Learning Objectives

- Contrast prescriptive energy code compliance with whole building analysis. Understand what building systems most affect energy use in buildings
- Describe how thermal bridging and thermal mass affect energy code compliance.
- Discuss payback cost of whole building analysis identified energy improvements.
- Understand cost effective energy efficient exterior masonry wall design.


Introduction

- Prescriptive energy code requirements for building envelopes have significantly increased. Compliance is becoming increasingly more difficult.
- This presentation will provide an overview of energy code provisions, review of energy analysis on various building prototypes.
- Look at thermal bridging, U and R values, and payback costs analysis for energy improvements using whole building analysis
- Throughout discuss resources available for designers, such as NCMA and ACI/TMS 122.

International Energy Conservation Code

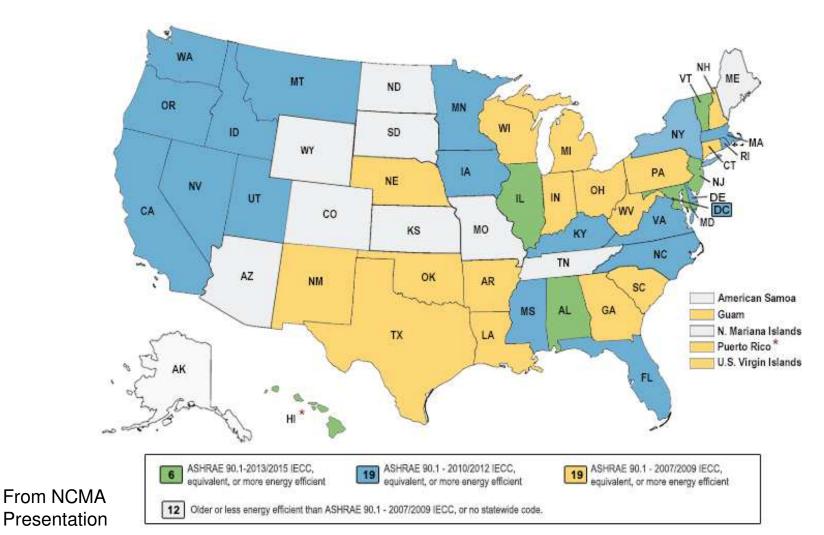
Energy codes continue to become more stringent...

- 2012 is about 15% more efficient than 2009
- 2015 is about
 11% more efficient
- References ASHREA 90.1

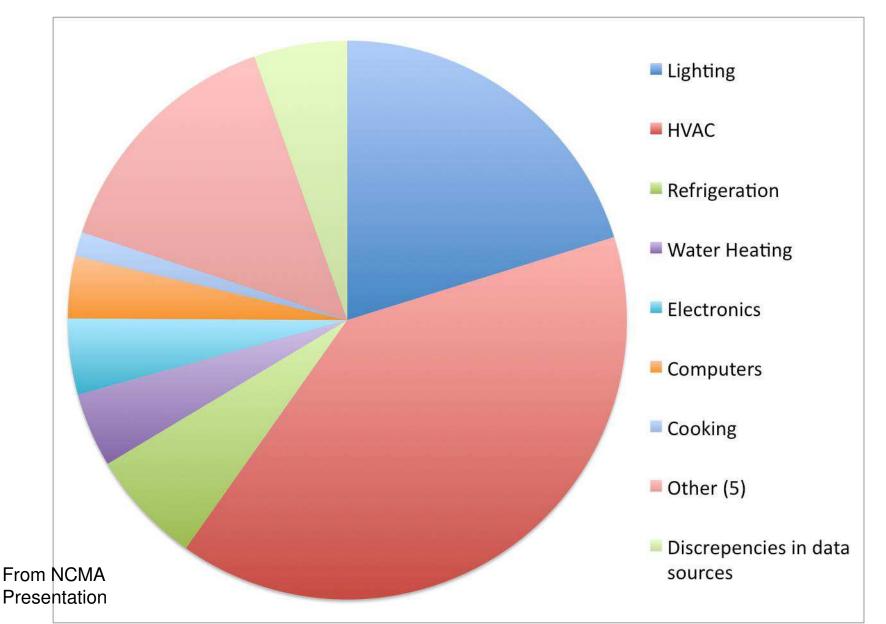
ANSI/ASHRAE/IES Standard 90.1

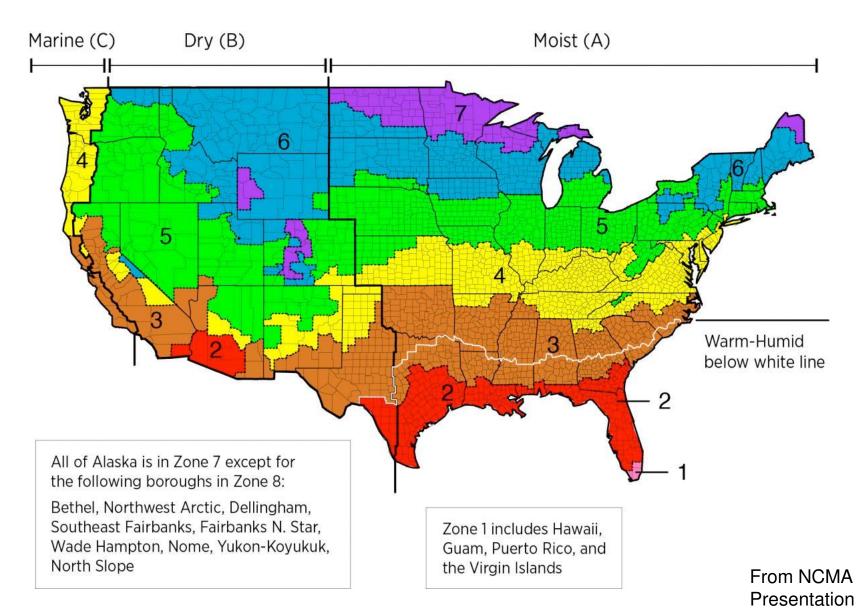
ANSUASHRAE/IES Scandard 90.1-2013 (Supervedes ANSUASHRAE/IES Scandard 90.1-2010) Includes ANSUASHRAE/IES Addenda Istock in Appendix F

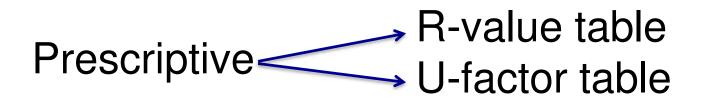
Energy Standard for Buildings Except Low-Rise Residential Buildings (I-P Edition)


Sex Appendix F for approval dates by the ASHMAE Sandards Convertise, the ASHMAE Board of Directors, the ICS Board of Directors, and the American National Sandards Institute.

This standard is under communia mathematical by a Standard Region Communia (SNC) for which the Standards Commone has analysised a documental groups for regular publication of addents or revenues, including procedures for briefly documents. Communia science on regions for charge to any part of the standards. The documental form-interactions and documents are been as the extent form than the ADHAM Web stel some advance of a or page. While the Interactions and document for the loss attempt of a ADHAM Standard and the processo from the ADHAM Web stel some advance of ADHAM Continent Service, 11711 Table Circle, NC, Adams, GA 10107-2305, Circuit, orden (Service) for region permanents and the 14506-MM2 (service) and the 1400-512-4723 (for orden in LS and Counting) for region permanents, parts and ware advance to regioners.

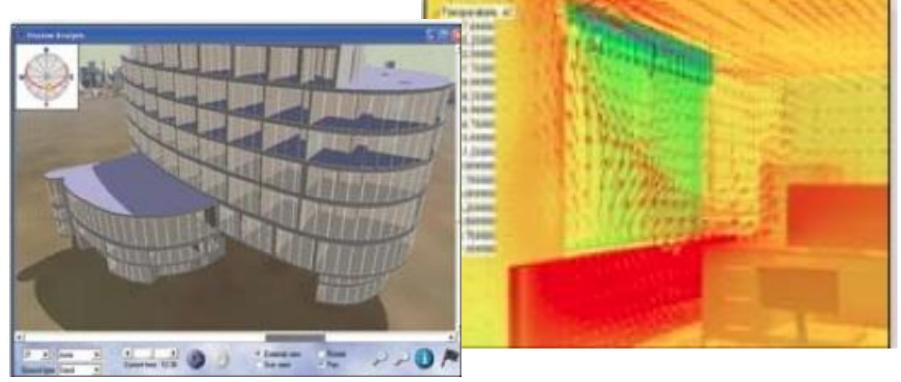

© 2013 ASHIAR 85N 1041-2334


International Energy Conservation Code (IECC)


Commercial Building Energy Use

Climate Zones

Compliance Options - IECC

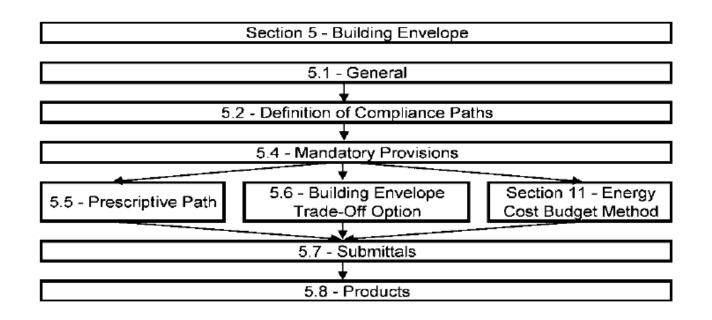


Trade-off ------ COMcheck Envelope

Total building_____ Builder, Sefaira, TREAT, performance BSim, etc.

Total Building Performance

Tools include: EnergyPlus/DesignBuilder, Sefaira, TREAT, BSim



www.buildingenergysoftwaretools.com

Energy Code Design ASHREA 90.1

STD. generally allows 3 methods to be used for design of the various energy related building systems (IECC – references -ASHRAE 90.1) **Similar in other Systems**

5. BUILDING ENVELOPE

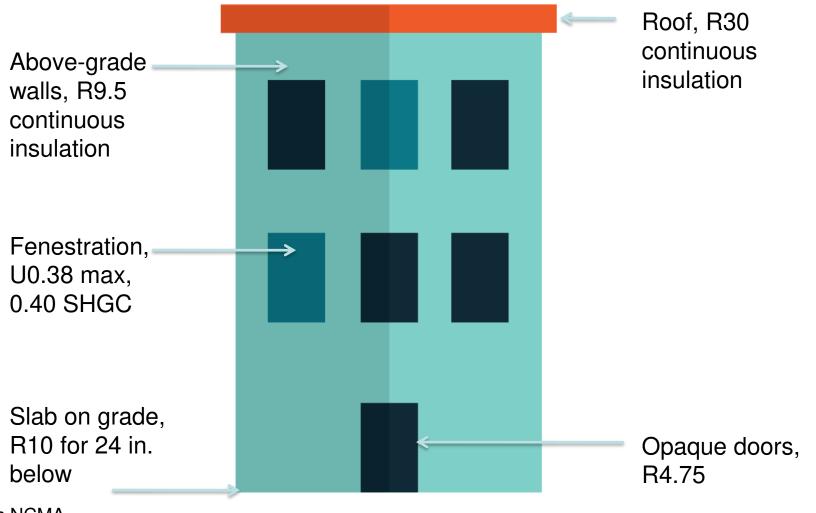
Energy Code Design

Prescriptive requirements – Envelope – Varies with Climate Zone

INDEE J.J-4	TABLE 5.5-4 Building Envelope Requirements for Climate Zone 4 (A, B, C)*						
	Non	residential	Re	sidential	Sei	miheated	<u> </u>
Opaque Elements	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	Assembly Maximum	Insulation Min. R-Value	
Roofs							=
Insulation Entirely above Deck	U-0.048	R-20.0 c.i.	U-0.048	R-20.0 c.i.	U-0.173	R-5.0 c.i.	
Metal Building ^a	U-0.055	R-13.0 + R-13.0	U-0.055	R-13.0 + R-13.0	U-0.097	R-10.0	
Attic and Other	U-0.027	R-38.0	U-0.027	R-38.0	U-0.053	R-19.0	_
Walls, Above-Grade							
Mass	U-0.104	R-9.5 c.i.	U-0.090	R-11.4 c.i.	U-0.580	NR	
Metal Building	U-0.084	R-19.0	U-0.084	R-19.0	U-0.113	R-13.0	
Steel-Framed	U-0.064	R-13.0 + R-7.5 c.i.	U-0.064	R-13.0 + R-7.5 c.i.	U-0.124	R-13.0	
Wood-Framed and Other	U-0.089	R-13.0	U-0.064	R-13.0 + R-3.8 c.i.	U-0.089	R-13.0	
Valls, Below-Grade							
IV-11							
Floors Floors Mass	s, A0	ove-Gra	ide				
	•	_	ide				TT 0 104
Mass	•	ove-Gra Mass	ide				U-0.104
Mass Steel-Joist Wood-Framed an	•	_	ide				U-0.104
Mass Steel-Joist Wood-Framed an	•	_	F-0.540	R-10 for 24 in.	F-0.730	NR	U-0.104
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors	1	Mass		R-10 for 24 in. R-15 for 24 in.	F-0.730 F-1.020	NR R-7.5 for 12 in.	U-0.104
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated	F-0.730	Mass NR	F-0.540				U-0.104
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated	F-0.730	Mass NR	F-0.540				U-0.104 -
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated Dpaque Doors	F-0.730 F-0.860	Mass NR	F-0.540 F-0.860		F-1 .020		U-0.104
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated Opaque Doors Swinging	F-0.730 F-0.860 U-0.700	Mass NR	F-0.540 F-0.860 U-0.700		F-1.020 U-0.700		U-0.104
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated Dpaque Doors Swinging Nonswinging Fenestration	F-0.730 F-0.860 U-0.700 U-0.500 Assembly	NR R-15 for 24 in. Assembly Max.	F-0.540 F-0.860 U-0.700 U-0.500 Assembly	R-15 for 24 in. Assembly Max.	F-1.020 U-0.700 U-1.450 Assembly	R-7.5 for 12 in. Assembly Max.	U-0.104
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated Dpaque Doors Swinging Nonswinging Fenestration	F-0.730 F-0.860 U-0.700 U-0.500 Assembly	NR R-15 for 24 in. Assembly Max.	F-0.540 F-0.860 U-0.700 U-0.500 Assembly	R-15 for 24 in. Assembly Max.	F-1.020 U-0.700 U-1.450 Assembly	R-7.5 for 12 in. Assembly Max.	U-0.104 - -
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated Opaque Doors Swinging Nonswinging Fenestration	F-0.730 F-0.860 U-0.700 U-0.500 Assembly Max. U	NR R-15 for 24 in. Assembly Max.	F-0.540 F-0.860 U-0.700 U-0.500 Assembly Max. U	R-15 for 24 in. Assembly Max.	F-1.020 U-0.700 U-1.450 Assembly Max. U	R-7.5 for 12 in. Assembly Max.	U-0.104 - -
Mass Steel-Joist Wood-Framed an Slab-On-Grade Floors Unheated Heated Opaque Doors Swinging Nonswinging Fenestration Vertical Glazing, 0%-40% of Wall Nonmetal framing (all) ^c Metal framing	F-0.730 F-0.860 U-0.700 U-0.500 Assembly Max. U U-0.40	NR R-15 for 24 in. Assembly Max. SHGC	F-0.540 F-0.860 U-0.700 U-0.500 Assembly Max. U U-0.40	R-15 for 24 in. Assembly Max. SHGC	F-1.020 U-0.700 U-1.450 Assembly Max. U U-1.20	R-7.5 for 12 in. Assembly Max. SHGC	U-0.104

Climate Zone 4 B

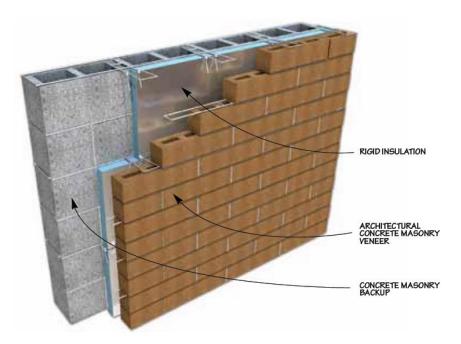
R-9.5 c.i.


Terminology

<u>**R-value</u>**: describes how well a material insulates under steady state temperature conditions; R = 1/U</u>

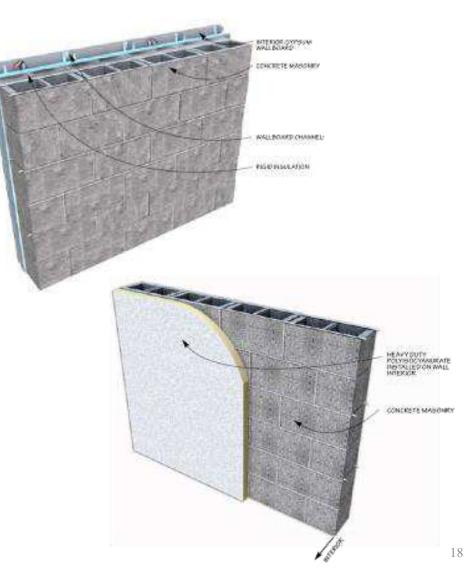
<u>**U-factor</u>: describes how well a material conducts heat under steady state temperature conditions; U = 1/R</u>**

<u>Heat capacity</u> (HC): describes how well a material stores and releases heat under transient temperature conditions (thermal mass)

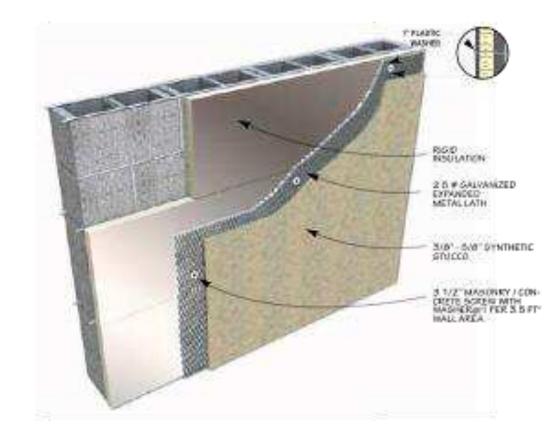

Prescriptive Compliance Example Zone 4 – Envelope – R values

Prescriptive R-Value Compliance

Masonry cavity wall: • cavity width can be varied to accommodate insulation


- R-values largely independent of grout schedule
- exposed masonry provides maximum durability

Prescriptive R-Value Compliance


Continuous interior insulation:

- R-values independent of grout schedule
- allows exterior
 exposed masonry
- furring space can be used for wiring and utilities

Prescriptive R-Value Compliance

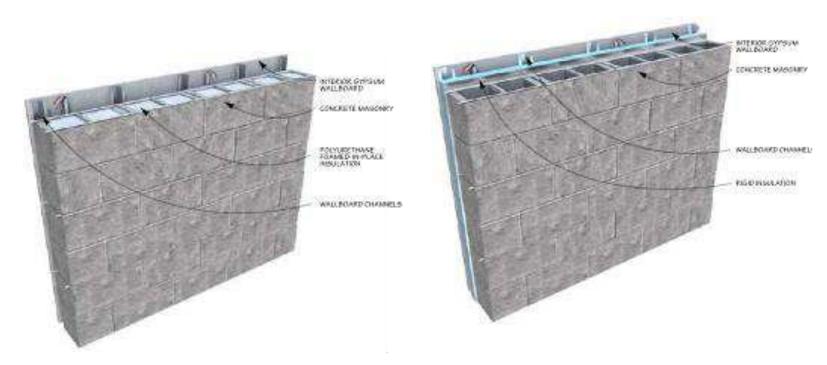
- Continuous exterior insulation:
- R-values independent of grout schedule
- allows interior
 exposed masonry,
 maximizing thermal
 mass benefits

Prescriptive R-Value Compliance Internal insulation

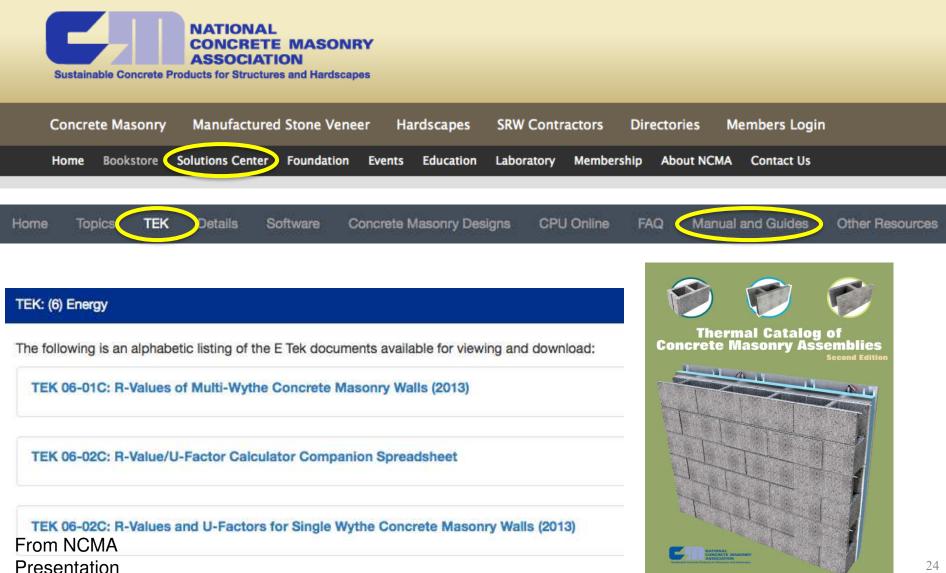
CLIMATE	1		1	2	3		
ZONE	All other	Group R	All other	Group R	All other	Group R	
Insulation entirely above roof deck	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-25ci	
Metal buildings ^b	R-19 + R-11 LS		R-19 + R-11 LS			R-19 + R-11 LS	
Attic and other	R-38	R-38	R-38	R-38	R-38	R-38	
Mass	R-5.7ci ^c	R-5.7ci ^c	R-5.7ci ^c	R-7.6ci	R-7.6ci	R-9.5ci	
Metal building	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	

From NCMA Presentation

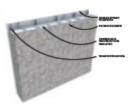
^c R-5.7ci is allowed to be substituted with concrete block walls complying with ASTM C90, ungrouted or partially grouted at 32 inches or less on center vertically and 48 inches or less on center horizontally, with ungrouted cores filled with materials having a maximum thermal conductivity of 0.44 Btu-in/h-f² °F.


WHAT IF MY BUILDING DOESN'T **MEET PRESCRIPTIVE INSULATION R-VALUES? Prescriptive U-Factor Compliance** Note this is assembly U Walls, Above-Grade U-0.104 R-95ci Mass

ASHRAE Provisions


IECC – Has a Separate U value table – Assembly U

Prescriptive U-Factor Compliance


Makes sense any time the preferred wall meets the prescriptive U-factor requirement.

CMU Products for Energy Efficiency

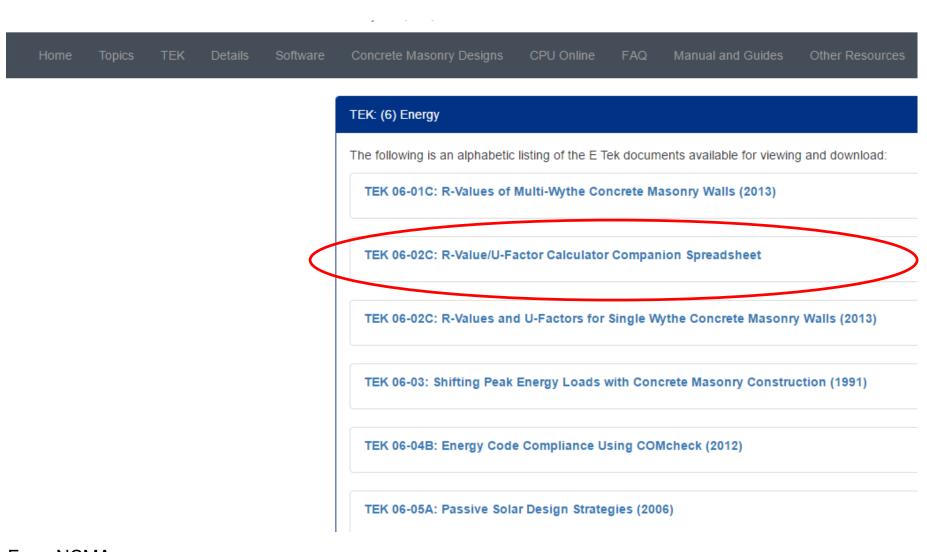
SINGLE WYTHE CONCRETE MASONRY ASSEMBLIES CELL INSULATION

Assembly 1-2: Polyurethane foamed-in-place insulation in ungrouted cells, exposed exterior masonry, ¹/₂ in. gypsum wallboard on furring on interior

Concrete Masonry Assembly R-Values (hr-ft2-oF/Btu) and U-Factors (Btu/hr-ft2-oF)

	6-in. Concrete Masonry				8-in. Concrete Masonry			
Density of		Lightly	Heavily			Lightly	Heavily	
CMU, PCF	Ungrouted	Reinforced	Reinforced	Fully Grouted	Ungrouted	Reinforced	Reinforced	Fully Grouted
85	7.48 (0.134)	5.55 (0.180)	4.39 (0.228)	2.90 (0.345)	9.68 (0.103)	6.73 (0.148)	5.11 (0.196)	3.21 (0.312)
95	6.64 (0.151)	5.11 (0.196)	4.13 (0.242)	2.81 (0.356)	8.50 (0.118)	6.17 (0.162)	4.80 (0.208)	3.10 (0.323)
105	5.90 (0.169)	4.71 (0.212)	3.90 (0.257)	2.73 (0.366)	7.48 (0.134)	5.65 (0.177)	4.50 (0.222)	3.00 (0.334)
115	5.27 (0.190)	4.35 (0.230)	3.68 (0.272)	2.66 (0.375)	6.59 (0.152)	5.18 (0.193)	4.23 (0.236)	2.91 (0.344)
125	4.73 (0.212)	4.02 (0.249)	3.48 (0.287)	2.60 (0.384)	5.83 (0.172)	4.75 (0.210)	3.98 (0.251)	2.83 (0.354)
135	4.26 (0.235)	3.73 (0.268)	3.30 (0.303)	2.55 (0.393)	5.18 (0.193)	4.37 (0.229)	3.75 (0.267)	2.76 (0.363)

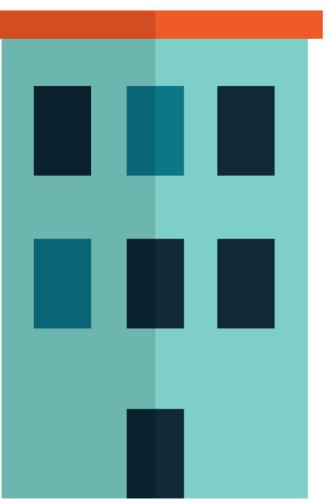
		10-in. Concrete Masonry				12-in. Concrete Masonry			
D	ensity of		Lightly	Heavily			Lightly	Heavily	
C	MU, PCF	Ungrouted	Reinforced	Reinforced	Fully Grouted	Ungrouted	Reinforced	Reinforced	Fully Grouted
	85	11.57 (0.086)	7.70 (0.130)	5.70 (0.176)	3.45 (0.290)	14.09 (0.071)	8.81 (0.113)	6.32 (0.158)	3.68 (0.271)
	95	10.08 (0.099)	7.04 (0.142)	5.34 (0.187)	3.33 (0.300)	12.20 (0.082)	8.06 (0.124)	5.93 (0.168)	3.56 (0.281)
	105	8.79 (0.114)	6.42 (0.156)	5.01 (0.200)	3.23 (0.310)	10.57 (0.095)	7.36 (0.136)	5.57 (0.179)	3.45 (0.289)
	115	7.67 (0.130)	5.86 (0.171)	4.70 (0.213)	3.13 (0.319)	9.17 (0.109)	6.71 (0.149)	5.23 (0.191)	3.35 (0.298)
	125	6.72 (0.149)	5.36 (0.187)	4.41 (0.227)	3.05 (0.328)	7.97 (0.125)	6.11 (0.164)	4.90 (0.204)	3.26 (0.307)
1A	135	5.92 (0.169)	4.90 (0.204)	4.14 (0.242)	2.96 (0.337)	6.96 (0.144)	5.57 (0.180)	4.59 (0.218)	3.17 (0.315)


2-WEB CMU ASSEMBLIES

Assembly 2-1: Polyurethane foamed-in-place insulation in ungrouted cells, exposed masonry (interior and exterior)

- Masonry exposed on both the interior and exterior provides maximum durability.
- Values in table assume no insulation in grouted cells. Note
- that some rigid inserts are configured to accommodate insulation, reinforcing steel and grout in the same cell, which can improve R-values.
- Other masonry cell insulations include molded polystyrene inserts, other types of foamed-in-place insulations and expanded perlite or vermiculite granular fills. These insulations will have different thermal properties than polyurethane which will affect the resulting R-value.
- Cell insulation, in contrast to additional insulation on either side of the wall, allows some of the thermal mass (masonry) to be in direct contact with the indoor air, providing excellent thermal mass benefits.
- · Insulation should occupy all ungrouted cells.
- "Lightly reinforced" = grout 8 ft o.c. both vertically and horizontally (or vertical reinforcement only at 48 in. o.c.).
 "Heavily reinforced" = grout 32 in o.c. vertically and 48 in. o.c. horizontally (or vertical reinforcement only at 24 in. o.c.).

	RETE MASONRY						
NCMA R-Value / U-Factor / Heat Capacity Ca	Iculator				<u>.</u>		
User Input Page (3 Layer Unit)				3 Layer Ur	hit		
Please enter inputs below for the wall asser	phly						
lease enter inputs below for the wan asser	nory				Fa	ice 1	ayo
Step 2: CMU Description							4 -
Description:							
NOTE: Enter description of CMU to be include Step 3: CMU Nominal Dimesions	ed in calculation output Specified				Web	Web	Web
Width (in.)	-0.375				_		3
Height (in.)	-0.375						
Length (in.)	-0.375						1 5
11- 40 XX					Fa	ce 2	ayer
Step 4: Face Shell Thickness					1.4		
Face 1 Thickness (in.)							
Face 2 Thickness (in.)							
			Calculated	Steps 11 8	a 12: Surface Finishes		
tep 4: Web Information			Web Area				
Neb 1 Thickness (in.)	Web 1 Height (in.)		0	Inside Sur	face Finish	None	
Neb 2 Thickness (in.)	Web 2 Height (in.)		0				
Neb 3 Thickness (in.)	Web 3 Height (in.)		0	Outside S	urface Finish	None	
Neb 4 Thickness (in.)	Web 4 Height (in.)		0				
		Total	0				
- Option - enter total web area for CMU							
NOTE - Entering a total web area above will	overide individial web entries.						


New – Changes to ASTM C 90 allow 2 web Blocks – will reduce block U

Second Compliance Method

Trade-Off Compliance/COMcheck

Three overall budgets: Envelope

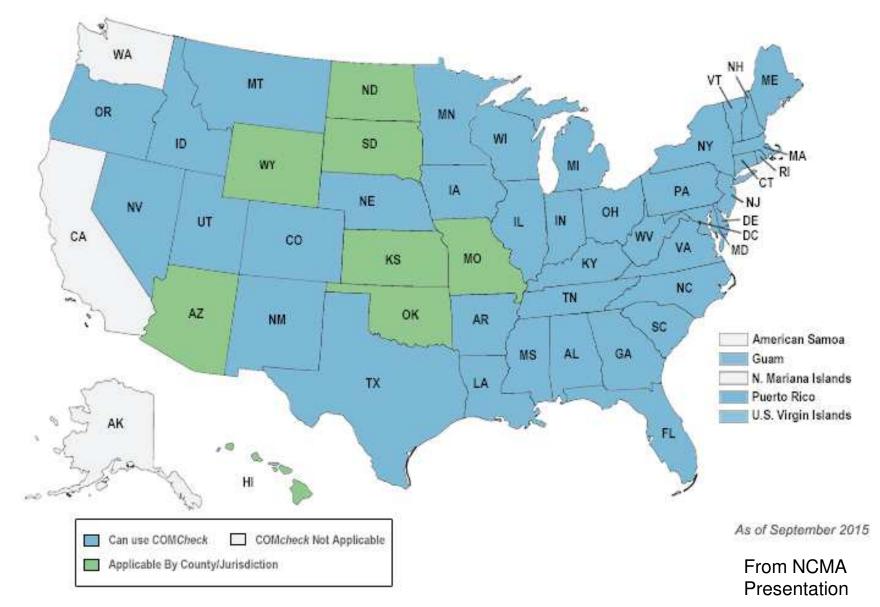
Mechanical Lighting

COMcheck

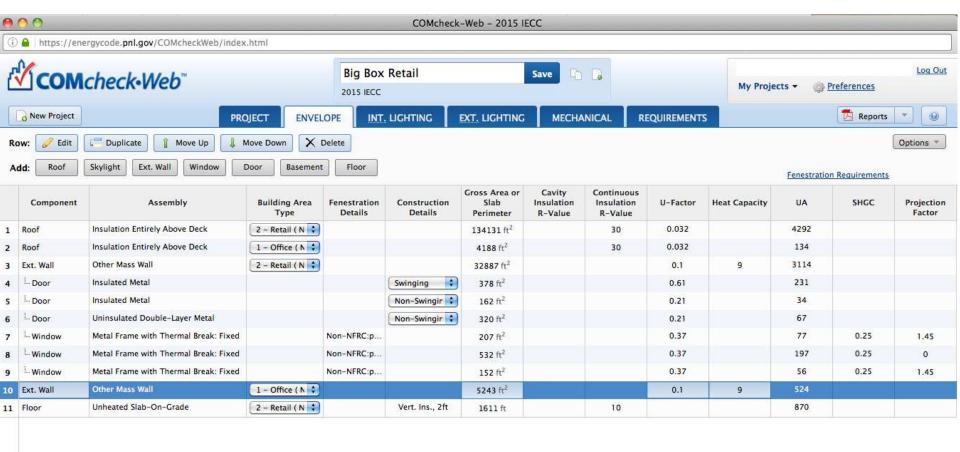
Energy Standard are no longer supported by COMcheck.

www.energycodes.gov/comcheck

COMcheck[™] Software


	Y.	v.		
Windows	Mac	COMcheck-Web	Technical Support	
COMcheck	k™ for V	Vindows®		Download COMcheck
Version 4.0	0.2 (Build	d Version: 4.0.2.8)		for Windows
Runs on Vis	sta or Wind	dows 7 in either single	, multi-user, or network environments	Download COMcheck Now!
Supporte	d Codes	:		
2009, 2013	2 and 20	15 IECC.		6 🥔
ASHRAE SI	tandard S	90.1:2007, 2010, an	d 2013	
Various sta	ate-devel	loped energy codes.		r 🗸 1
Version 4.0	0.2 includ	des support for the 2	015 IECC energy code. This release also in	cludes support for
			nservation'. 2006 IECC and 2011 Vermont	

COMcheck


- easy way to take advantage of trade-offs, ie, increase roof insulation to reduce wall or window requirements.
- program shows if the envelope complies, and how close it is to compliance
- allows individual elements to be tweaked for compliance, revisions are quick and easy.

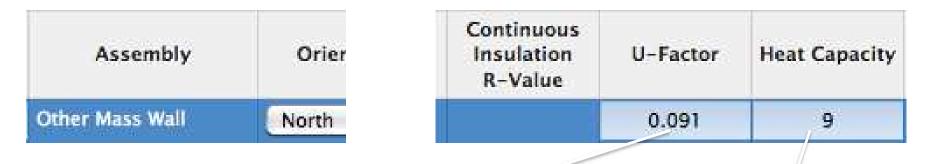
Trade offs are for envelope only

Where Can I Use

COMcheck Input

From NCMA Presentation

+2%


-

COMcheck Input

	Create Ext. Wall			0
 Wood-Framed, 16in. o.c Wood-Framed, 24in. o.c 				
 Steel-Framed, 16in. o.c. Steel-Framed, 24in. o.c. Metal Building Wall 				
 Solid Concrete Wall Concrete Block Partially 	Sin. Thickness	•	Thickness:	8" ‡
Other (U-Factor option)	Wood Framed Wall Wood Framed Wall Steel Framed Wall			
	Metal Building Wall Mass Wall Other Wall	Create	Ext. Wall	or <u>Cancel</u>

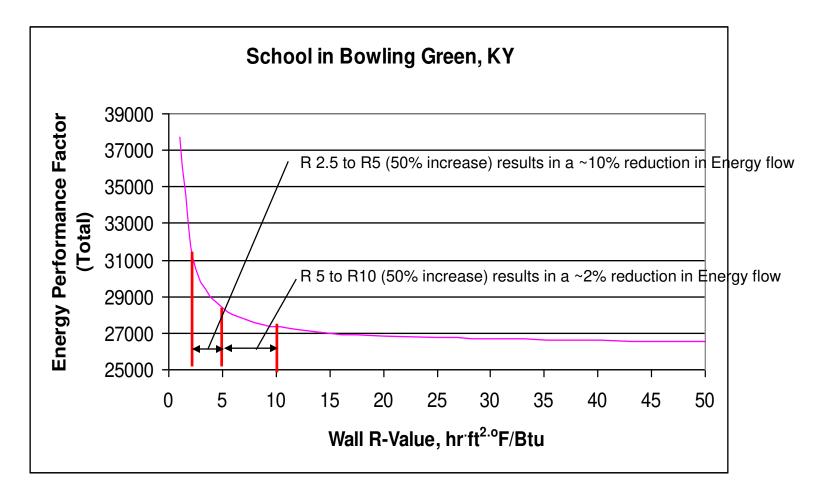
Always use Other (mass) exterior wall input Default value for CMU very conservative.

COMcheck Input – Other Mass Wall

Thermal CatalogNCMA TEK 6-16ANCMA TEKs 6-1C & 6-2CR-Value/U-FactorCalculatorAlso ACI 122R Guide to Therma

From NCMA Presentation Also <u>ACI 122R Guide to Thermal</u> <u>Properties of Concrete and</u> <u>Masonry Systems</u>

COMcheck Results

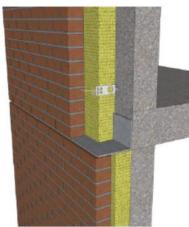

- Using COMCheck allows slightly higher Ufactor for mass wall than prescriptive
- Using trade-offs can change required efficiency for walls (or other components)

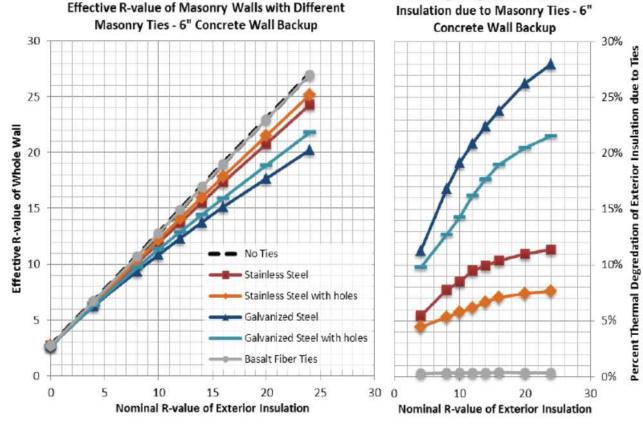
Method	Mass wall requirement
Prescriptive R-value	R9.5 ci
Prescriptive U-factor	U-0.104 (R9.6)
COMcheck code max U	U-0.109 (R9.2)
Trade-off: max roof R (R60)	U-0.164 (R6.1)
From NCMA Presentation	

COMcheck

- If close to prescriptive can help
- But prescriptive R/U values close to max effective values.
- Large increases in R have less impact at higher R values
- See following slide

Envelope Performance Factor (EPF) is a relative term that approximates the total heating and cooling energy associated with an average square foot of surface or square meter of building envelope


COMCheck accounts for this effect so adding a lot of R on roof only minimally effective if on flat part of curve


Thermal Bridging

Thermal bridging can have a significant effect on Thermal resistance of the envelope – Thus the C_i or U requirement.

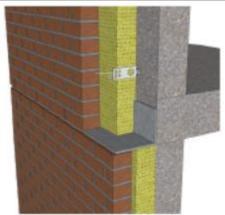
Ties(anchors) angles can reduce steady state thermal resistance significantly

16" x 24"

THERMAL BRIDGING OF MASONRY VENEER CLADDINGS AND ENERGY CODE COMPLIANCE, 12th Canadian Masonry Symposium Vancouver, British Columbia, June 2-5, 2013 Michael Wilson1, Graham Finch2 and James Higgins3

Standard slab attached shelf angle

Thermal Bridging


Thermal bridging can have a significant effect on Thermal resistance of the envelope – Thus the Ci requirement.

Shelf angles can reduce steady state thermal resistance significantly

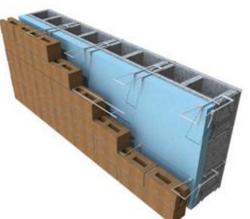
~40% reduction

MASONRY VENEER SUPPORT DETAILS: THERMAL BRIDGING, 12th Canadian Masonry Symposium Vancouver, British Columbia, June 2-5, 2013 Michael Wilson1, Graham Finch2 and James Higgins3

Poured Concrete Backup

R-10.5 (RSI 1.84) U-0.096 (USI 0.543)

Metal Thermal bridges can impact Steady state thermal resistance.

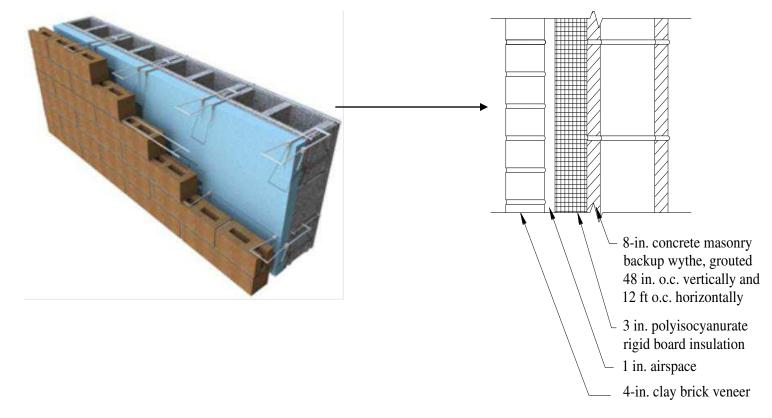

- What impact does reduction in the exterior wall thermal resistance have?
- Do changes in envelope thermal resistances produce proportional increases in energy loss and thus energy use?
- Looked at this issue further by addressing energy use in a few typical masonry buildings –

BEST WAY TO EVALUATE THESE EFFECTS IS TO USE HOLISTIC ENERGY ANALYSIS – ENERGYPLUS, DOE 2.

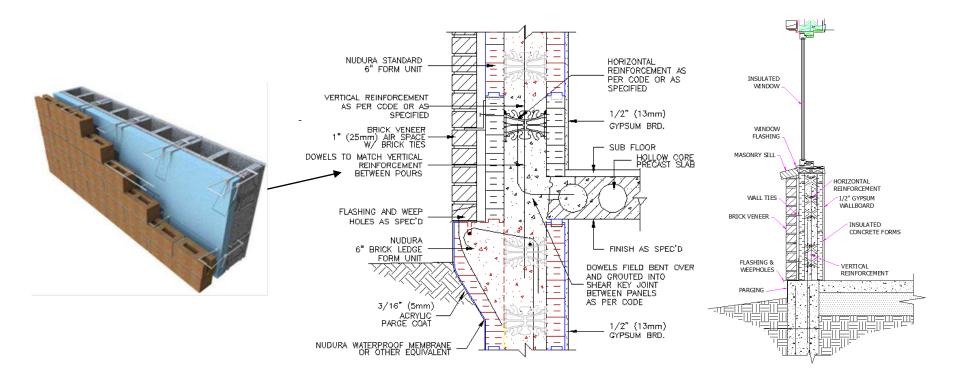
- Basis of 3rd compliance method, Energy Budget method – Proposed building must have ≤ Energy cost to prescriptive methods – Also new Appendix G method index.
- Better accounts of thermal mass effects dynamic weather and internal loads, etc.

Designed a Base Prototype Middle School to Meet prescriptive provisions -4B

- Most Lights T 12- 2 and 4 lamp systems
- High bay halides
- HVAC VAV Gas boilers and Chillers
- Typical school use schedules.
- Minimum Envelope U and R values ~ R 26 Roof, ~R 9.8 Walls
- Base EUI ~132



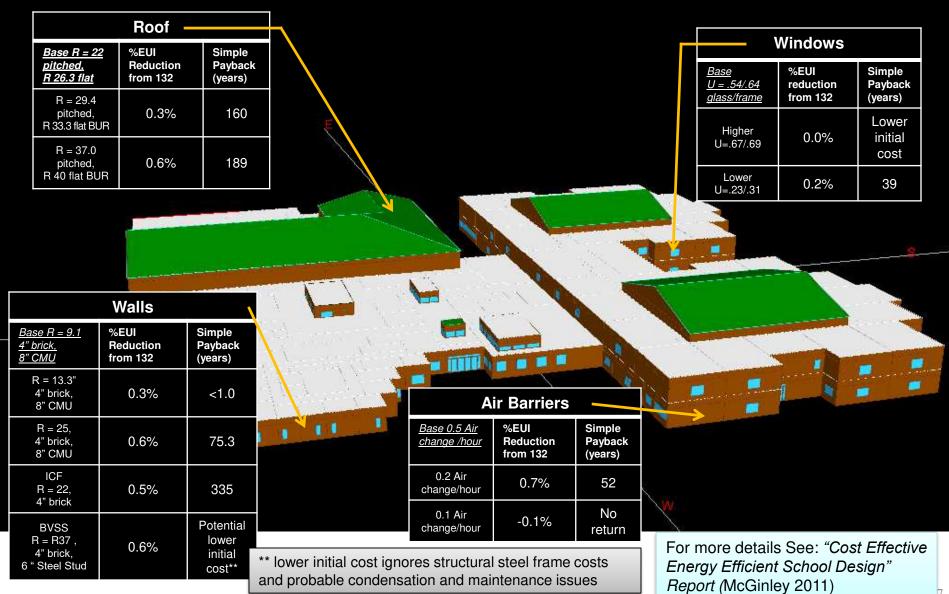
www.schoolclearing house.org) ~158,000 ft²


2 Story- Prototype

Evaluated Select Alternatives (ECM's):Variety of Building Envelopes - Walls & roofs

Vary the exterior masonry cavity wall insulation: $1 \frac{1}{4}$ " thick polystyrene, $1 \frac{1}{2}$ " thick polystyrene, 2" thick polyisocyanurate foam board, 3" polyisocyanurate foam board. **Over 100% swing in insulation values.**

Evaluated Select Alternatives (ECM's):Variety of Building Envelopes - Walls


Exterior CMU wall structure to an insulated concrete form (ICF) wall system; 4" face brick, air space, 1 $\frac{1}{2}$ " polyurethane, 6" 140lb concrete, 1 $\frac{1}{2}$ " polyurethane, and $\frac{1}{2}$ " gypsum board.

Investigated Energy Conservation Measures

- Each of the Mature alternative energy conservation measures (ECM's) technologies were incorporated into the building.
- Prototype building was re-analyzed using eQuest (DOE2) for each ECM singly and in groups - 5 KY cities. Holistic analysis <u>– Energy Budget Method</u>
- Conducted an economic differential cost analysis
 Pay back and Self-funding

Energy Savings and Payback in Typical Middle School*

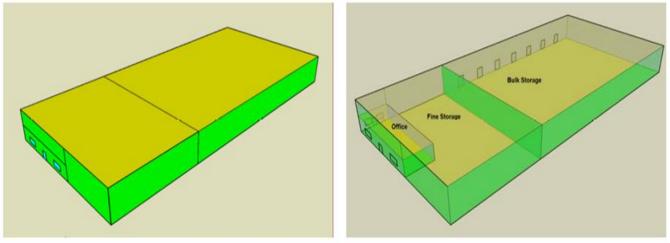

*Louisville, KY – other climates similar EUI – Energy Use Index (kBtu/SF)

Courtesy of the Indiana-Kentucky Structural Masonry Coalition

Energy Savings and Payback in Typical Middle School*

*Louisville, KY – other climates similar EUI – Energy Use Index (kBtu/SF)

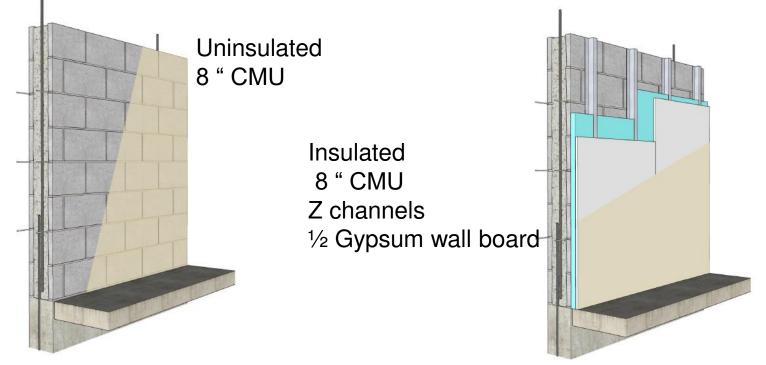
Courtesy of the Indiana-Kentucky Structural Masonry Coalition


ALTERNATIVE ENERGY DESIGNS IN SINGLE WYTHE MASONRY BUILDINGS

- U of L looked at design alternatives to the simple prescriptive solutions offered by the energy code for three building archetypes that are typically constructed with single wythe masonry exterior wall systems.
- For each archetype, various code-compliant [ASHRAE 90.1 2010, NECB 2011] alternative construction configurations were examined for energy efficiencies, energy costs and construction costs (for various climate zones).
- Also conducted a differential capital cost and payback analysis
- Also looked at Canadian Code

Archetype 1 – Warehouse - US

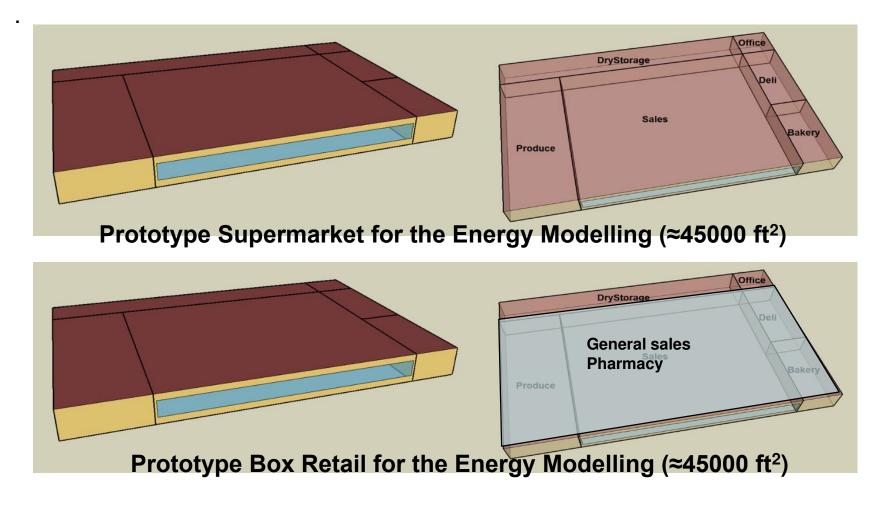
One of 16 reference buildings used for the evaluation of energy analysis software by the Department of Energy and developed to be representative of over 80% of typical warehouse configurations [Deru, et-al 2011], [NREL 2013].


Prototype Warehouse for the Energy Modelling (≈50000 ft²)

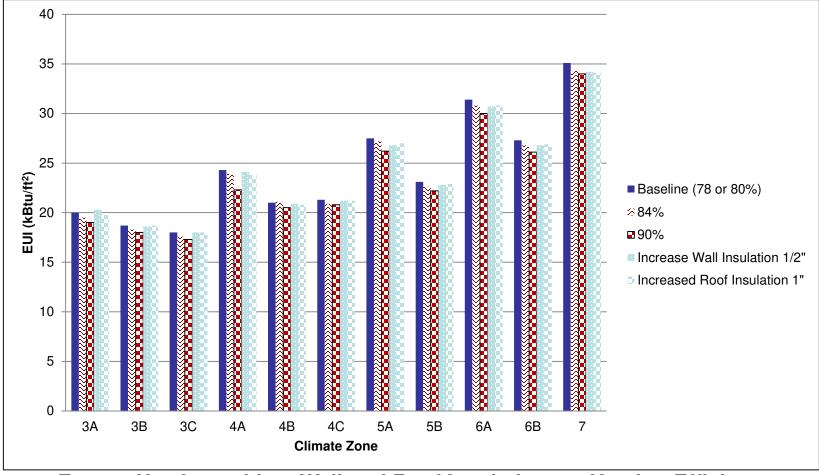
Evaluated Climate Zones and cities.

		Climate			Climate
City	State	Zone	City	State	Zone
Atlanta	Georgia	3A	Chicago	Illinois	5A
Las Vegas	Nevada	3B	Boulder	Colorado	5B
San Francisco	California	3C	Minneapolis	Minnesota	6A
Baltimore	Maryland	4A	Helena	Montana	6B
Albuquerque	New Mexico	4B	Duluth	Minnesota	7
Seattle	Washington	4C			

Prototype Warehouse <u>BASELINE DESIGNS - US</u> Configured to Code Prescriptive levels and Analyzed using the Energyplus program for cities in Table 1 as required in the Energy Budget Code Compliance method

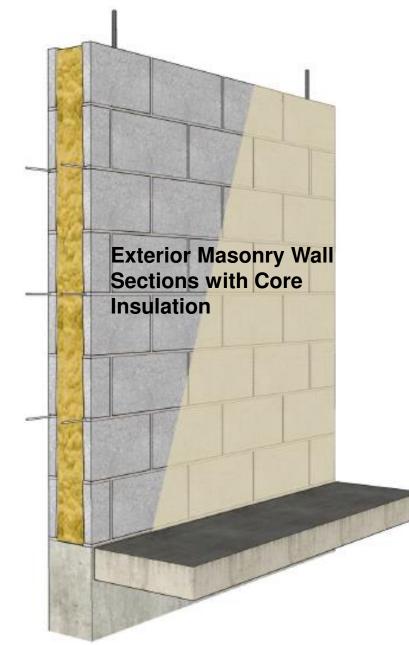


(Infiltration rate of 0.038 cfm/ft²)


Some climate zone required the exterior walls of the bulk storage to be insulated, some did not. The office and fine storage areas were insulated with varying R values

Archetype 2 & 3 Supermarket & Box Retail-US

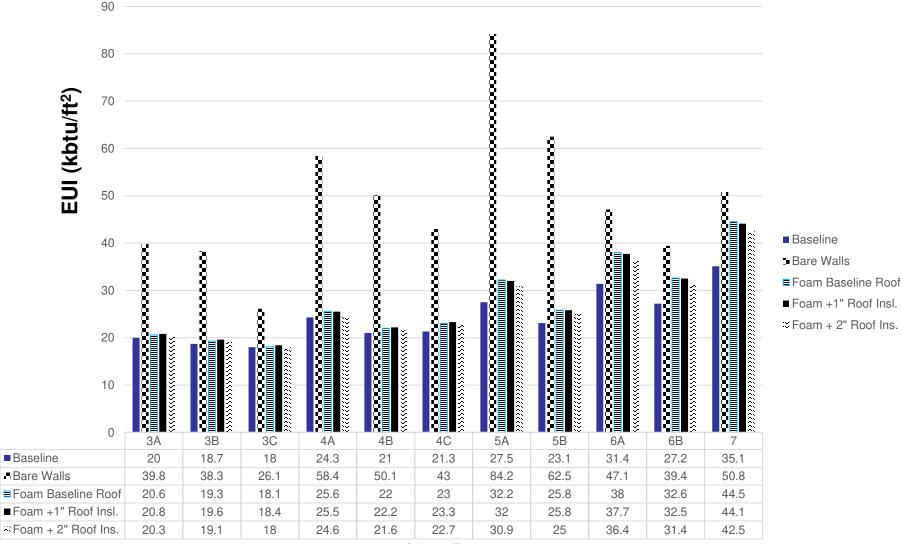
One of 16 reference buildings used for the evaluation of energy analysis software by the Department of Energy [Deru, et-al 2011], [NREL 2013].



Warehouse Sensitivity Analysis- US

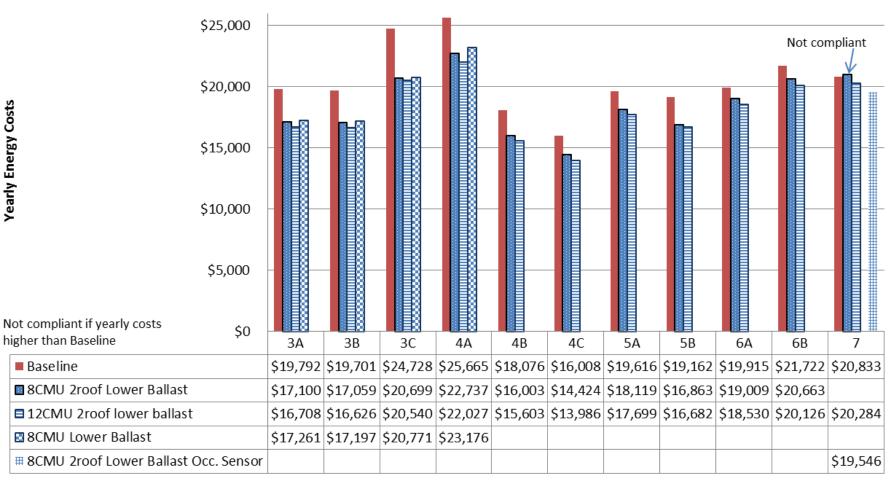
Energy Use Intensities: Wall and Roof Insulation vs. Heating Efficiency Less effect of insulation more effect of HVAC effciency

Warehouse Sensitivity Analysis- US

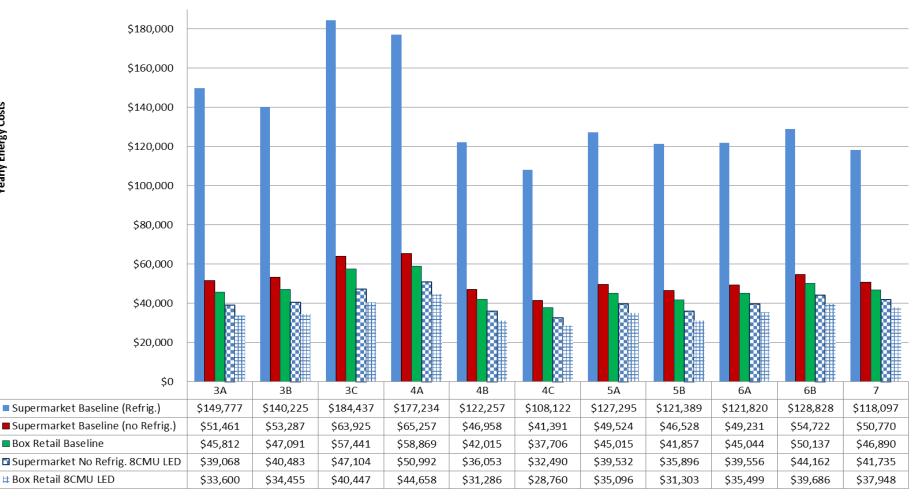

8" CMU wall, partially grouted and reinforced at 48 inches OC -all other cores filled with foam insulation

By NCMA TEK Note 6B [14] U- and R-values = 0.287 Btu/ft²-h-°F and 3.48 ft²-h-°F/Btu

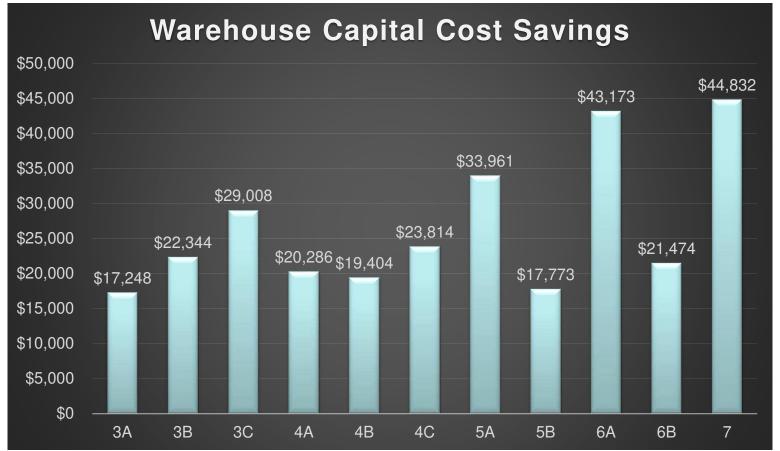
This is a significant decrease in thermal transmittance when compared to the bare masonry wall (with U-value of 0.580 Btu/ft²-h-°F-partially grouted).


(8" CMU wall having a continuous insulation of R-7.2 ft²-h- $^{\circ}F$ / Btu (U-value of 0.125 Btu/ft²-h- $^{\circ}F$)).

Warehouse Sensitivity Analysis- US

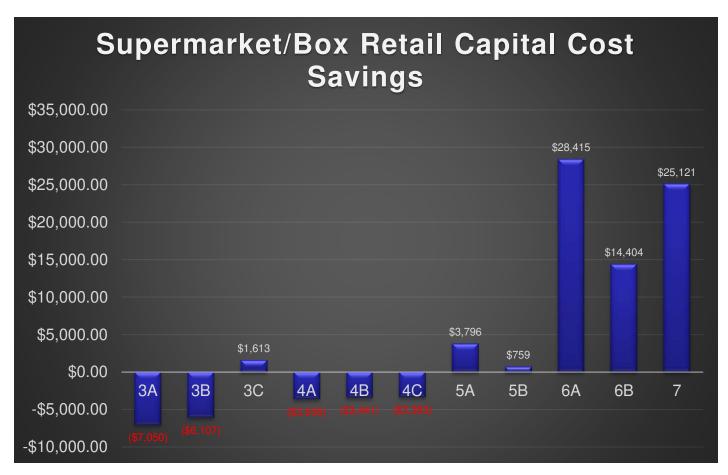

Climate Zone

Alternative Designs US Code **Compliance - Warehouse**


Figure: Yearly Prototype Warehouse **Energy Costs. (based on State Averages)**

Alternative Designs US Code Compliance- Supermarket-Box Retail

Yearly Prototype Energy Costs.


Alternative Designs US Differential Construction Cost

8"CMU Foam core Walls, Lower Ballast Factors For 4B and above - +2" Roof insulation For 7 - Occupancy Sensors

Alternative Designs US Differential Construction Cost

Construction Cost Savings of Alternative Designs Box Retail and Supermarkets – 8" CMU Foamed wall and LED Lights

Conclusions

- Prescriptive Methods can be used but assembly U values may be the best way to achieve this especially with 8" or 12" CMU and foamed cores, or two web blocks.
- COM check Envelope trade offs can work where your designs are close to prescriptive code configurations. Use OTHER Walls.
- Energy Budget method showed significant potential energy savings of over 50% for typical prescriptive configurations. Better lighting, HVAC systems and aggressive control strategies -paybacks < 3 years.

This concludes The American Institute of Architects Continuing Education Systems Course

The Masonry Society

Dr. W. Mark McGinley, PE Professor and Endowed Chair for Infrastructure Research Civil and Environmental Engineering University of Louisville Louisville, Kentucky 40292 Office : 502-852-4068 FAX: 502-852-8851 email:m.mcginley@louisville.edu

